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C~IAPTER 1: GENERAL INTRODUCTION 

EPR 'Theory 

The atom is composed of a nucleus, containing protons and neutrons, as well as 

electrons found within a certain probability of the nucleus. N~iR (nuclear magnetic 

resonance) instrumentation provides scientists with the ability to determine the local structure 

of biomolecules based on the phenomenon of quantized nuclear magnetic moments. Unlike 

NMR, the use of EPR/ESR {electron paramagnetic resonance/electron spin resonance) 

instrumentation is not limited to protein or sinnple size (Biswas et al. , 2001). Therefore more 

proteins can be studied with EPR than with NMR. EPR, on the other hand, comes as a result 

of the gll~ntization of electron magnetic moments. The magnetic moment, µ, is directly 

related to the spin state of the electron, 

!~ — -g~S. 

S represents the spin state of the electron while ~i and g are constants that represent 

the Bohr magneton and g-factor, respectively. The Bohr magneton is a constant that reflects 

the magnetic moment of the electron with respect to its mass. The g-factor is dependent 

upon the orbital motion within the atom and therefore reflects the local environment of the 

electron. It is positioned in the center of the middle hyperfine line of afirst-derivative mode 

spectrum. The g-factor for a free electron is 2.0023 and the g-factor for a nitroxide spin label 

varies between 2.0020 and 2.0090. g-factors that vary most from that of a free electron are 

the unpaired electrons of transition metals. The negative sign in the equation above indicates 

the magnetic moment is in the opposite direction of the spin (Knowles et al. , 1976). 
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In solution, with no external stimuli, the spin states of all unpaired electrons are equal 

in energy. However, in the presence of a magnetic field, some spins will align with the 

magnetic field while other spins orient themselves anti-parallel to the magnetic field. The 

spin-state that is aligned with the magnetic field (spin + 1/ 2) is higher in energy than the spin 

state aligned anti-parallel to the field (spin -1/ 2) (Knowles et al. , 1976). 

When the microwave frequency matches that of the magnetic cavity, the radiation is 

absorbed by the lower energy spin, exciting it to the higher energy state. This is referred to 

as resonance. The energy of the unpaired electron in a magnetic field, with a radiation source 

applied to it, is 

E=hv=+1/Zgf3B, 

where B represents the strength of the magnetic field, v represents the frequency of the 

electromagnetic radiation applied, and h represents Planck's constant, as seen in Figure 1.1 

(Knowles et al., 1976). 

In the case of site directed spin labeling (SDSL), a nitroxide spin label undergoes a 

chemical reaction with a particular residue within the amino acid sequence of a protein to 

create a covalent bond. SDSL labels are highly stable and give well resolved signals (Biswas 

et al. , 2001). This technique has made it possible to determine the local environment of a 

protein that does not contain any naturally occuring unpaired electrons. The most common 

spin label used in biophysical research is a nitroxide spin label. This type of spin label 

contains an unpaired electron in the p-orbital of a nitrogen atom covalently bonded to an 

oxygen atom. The free electron interacts with the nuclear spin of the nitrogen, which in turn 

interacts with the magnetic field, yielding a spectrum of three hyperfine lines reflecting the 

spin states of nitrogen: -1, 0, 1, as shown in Figure 1.2 (Biswas et al. , 2001; Knowles et al. , 
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1976). one example of a nitroxide spin label is methanethiosulfonate spin Iabel (NYSE). 

MYSL produces a disulfide bond by reacting with the sulfur of a cysteine residue (Figure 

1.3). Site directed spin labeling requires the amino acid of interest to be mutated to cysteine 

so that it may be later spin labeled. A naturally occurring cysteine would be mutated to an

alanine or a serine in order to avoid spin labeling at an undesired position in the protein. The 

advantages of using MTSL instead of other spin labels include (1) cysteines are rare in the 

non-disulfide bonded form, (2) its small size, (3) the flexibility of the side chain, and (4) the 

fast reaction it has with cysteines under mild conditions in buffer (Biswas et al., 2001; 

Hustedt 8~ Beth, 1999). 

SNA►.R.E Proteins and Membrane Fusion 

Membrane fusion is a common occurrence throughout the biological world. ,This 

phenomenon is vital t0 the process of exocytosis and the t~rransport of chemicals out of the 

cell. The fusion of two opposing membranes is an energetically costly process. To drive 

membrane fusion to completion, conserved proteins integrated into both the vesicle and 

target membranes (v- and t-SNAREs) come together to form a parallel four-helix bundle, 

which assists in the fusion process, as seen in Figure 1.4 (Poirier et al. , 1998). These proteins 

are called SNARE proteins (soluble N-ethylmalemide associated receptor proteins). NSF 

and SNAP are post-fusion accessory proteins used for disassembly of the SNARE complex 

to be recycled for further membrane fusion (for review, see Bennett & Scheller, 1994). 

SN~~ proteins are necessary for membrane fusion in several instances. For 

example, synaptic vesicles containing neurotransmitters must fuse with the plasma 

membrane of a neuron for the release of the neurotransmitters into the synapse cleft from the 
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pre-synaptic nerve terminal. This fusion process is triggered by the presence of Cat+ ions. 

SNARE proteins are also vital for the fusion of secretory vesicles, transported from the golgi 

body, with the plasma membrane, shown in Figure 1.5 (Sudhof, 2004). 
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Figure ~ .1. T`he energy from the ground state to the excited state of the electron spin is 

proportional to the frequency of the microwave radiation. Rather than ~v, EPR data is taken 

with respect the magnetic field, OB (Knowles et al. , 1976). 
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Figure 1.2. The three peaks of the EPR spectra of a nitroxide spin label represents the 

interaction of the unpaired electron the nuclear spin of its nucleus, nitrogen. The spectra in 

this figure vas taken in the first derivative mode (Knowles et al. , 1976). 
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Figure 1.3. Site-directed spin-labeling (SDSL) is a chemical reaction between the sulfur of a 

cysteine residue in a protein and a sulfur of a nitroxide spin label, such as MTSL, forming a 

disulfide bond between the protein and the spin label at a cysteine mutated site in the protein 

(Fanucci et al. , 2003 ). 
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Figure 1.4. SNARE proteins are essential to membrane fusion within numerous parts of the 

biological cell. Syntaxin 1 A is a transmembrane protein (t-SNARE), which interacts with a 

membrane surface protein SNAP-25 (t-SNARE) and VAMP-2 (v-SNARE), a tl-ansmembrane 

protein located on the opposing membrane, for membrane fusion and the release of the 

vesicle contents into the synaptic space between neurons. In this figure, SNAP-25 is 

represented by the white helices in the SNARE complete (Kweon et al. , 2002). 
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Figure 1.5. ~1~sicles from tY~e golgfl bodges fiase with the ~Iasma rrbembxane of a cell via 

SNP complex formation ~leinsYraith ~i Kish, 1995). 
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CHAPTER 2: EXTENDING THE LIMITATIONS OF THE CONTINUOUS wAVE 

EPR SPECTROSCOPIC RULER 

Introduction 

Numerous methods of measuring distances using EPR data have been proposed in 

publications throughout the years. Each method has its limitations. Continuous wave (cw) 

EPR measurements are favorable at small distance increments, whereas pulse EPR methods 

axe favorable at larger distances. Fourier deconvolution method accurately measures 

distances between 8 and 25 Angstroms. This cwEPR method takes advantage of the 

broadening due exclusively to dipolar interactions at low terriperatures and deconvoluting the 

spectrum by subtracting a reference spectrum of a single spin with no dipolar interactions 

(Rabenstein &Shin, 1995). Peak height ratios and half-field transition methods are both 

good for measuring relatively short distances (Perrson et al. , 2001). Line-shape simulations 

accurately measure up to approximately 1 S Angstroms (Hustedt &Beth 1999; Persson et al. , 

2001). There are EPR methods that are capable of measuring distances beyond 25 

Angstroms. These methods require pulse EPR spectroscopy, such as double electron-

electron resonance (DEER) (Larson & Singel, 1993), the " 2 + 1"pulse sequence 

(Raitsimring et al. , 1992), and double-quantum EPR (Borbat ~ Freed, 1999; Saxena & 

Freed, 1997). 

The Fourier Convolution-I)econvolution Method 

A protein labeled with two nitroxide spin labels may have spin-spin interactions. The 

spin-Hamiltonian contains a term for this dipole interaction, as well as a term for each spin 
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labeled residue not interacting with the other and a term for scalar spin exchange: 

H= hSZiS~ Z + h~2S~ + h2ye2(1-3cos28)(3SiZS2z Sl 'S2)/2R + hJSiS2

where h is Planck's constant (h/2~c), ye is the gyromagnetic ratio of the electron, 3 is the spin 

exchange integral, S 1 is the spin of electron 1, S~ 1 is the resonance offset for electron 1, S2 is 

the spin of electron 2, S22 is the resonance offset for electron 2, 8 is the angle between the 

interspin vector and the direction of the magnetic field, and R is the distance between the 

spin labels. The subscript z refers to the z-component of a spin. It is assumed that the dipole 

interaction term will be dominant when R is between 7 and 25 Angstroms (:Kiao &Shin, 

2000). 

The resulting spectrum of a doubly spin-labeled protein is a convolution of (1) the 

spins interacting with each other, D(R, B'-B) and (2) a spin label interacting with its local 

environment, S(B). 

II(B) _ ~J°° S(B)D(R,B'-B)dB' 

D(R,B'-B) represents the dipolar broadening (interacting) spect~vm and S(B) represents the 

non-interacting component of the spectrum. In reality, there is a distribution of distances 

between the spins, P(R), due to the flexibility of the nitro~de spin label after bonding to the 

protein, as well as to various conformations that a protein may adopt. Therefore, the dipolar 

interaction should be viewed as a weighted sum, M(B): 

With this in mind, the new equation representing the spectrum of a doubly labeled 

protein would be 

II(B) — -~°° S(B')M(B'-B)dB'-
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In Fourier space, the convolution of the interacting and non-interacting spins (Figure 

2.1) would be represented as 

In order to "deconvolute" the spectrum, first it should be determined what part of the 

spectrum is the result of the non-interacting spin label. The inverse Fourier transformation of 

II*(c~)/S*(~) would result in the the dipolar broadening function of the interacting 

component of the spectrum, 

M(B) _ (2~)-1~2exp{27cic~[II*(c~)/S*(~)]}, 

where w is in units of ~/1024 Gauss"1. 

In order to reduce the noise, the dipolar broadening function would be fit to the sum 

of two Gaussian functions. Performing an inverse Fourier tranformation of the best fit sum 

of functions yields a final dipolar spectrum, a Pake pattern (Figure 2.2). T'he Pake pattern 

has a splitting twice the gauntity of the magnetic field, 2B, and the average of this splitting is 

related to the distance between the spin labels, as shown in the equation below. 

~2B> _ (0.75)(3/2)ge(3R-3

The distance between the two spin labeled amino acids can be determined by solving 

for "R" (Figure 2.3): 

R = [(0.75)(3/2)ge~3/<2B>]'~3

The scalar spin exchange (J-coupling) of the spins would be neglible because the 

spins are too far apart to experience through bond interactions. J-coupling would be the 

dominant term in the energy of the system if sites spin labeled were on adjacent residues or 

practically on top of one another. The non-interacting spins do contribute to the EPR 

spectrum. However, to eliminate the effect of the non-interacting spins on the final spectral 
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analysis the spectrum containing the spin interaction is divided by the reference spectrum 

(non-interacting spins) in Fourier Space. Therefore in the Hamiltonian given above the 

dipolar interaction would be the dominant term (Rabenstein &Shin 1995; Xiao &Shin, 

2000). 

The largest source of error when using this method is the presence of monoradical 

impurities from incomplete spin labeling of the doubly spin labeled sample. This problem 

can be taken care of mathematically by applying a b-function to the equation coefficient for 

the population of monoradical impurities. The population of monoradical impurities is 

attained by the y-axis offset of the Gaussian function fitting to the data (Figure 2.1) (Berliner, 

et al., 2000; Rabenstein &Shin 1995). 

The population of spins is random isotropic (no orientation dependence). It is 

assumed that the anisotropy from the g- and A-tensors are negligible. However, under frozen 

conditions the various static orientations of these tensors give rise to homogeneous and 

inhomogeneous broadening in both spectra. Linewidth at half height is inversely 

proportional to spin-spin relaxation time. 

~ _ (~T2)-1 

The spin-spin relaxation time, T2, is the time it takes for spins to relax back to ground 

state after one spin has become close enough to another spin to induce a change to a higher 

energy spin state (Figure 2.4). Spins that are close to one another have short spin-spin 

relaxation times, causing the linewidth to broaden (]~nowles e~ al. , 1976). 

Inhomogeneous broadening, T2*, is due to inconsistent magnetic field strength 

throughout the sample cavity. It gives Gaussian shaped linewidths. 
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This type of broadening is often seen in solid-state or rnotionally frozen samples that contain 

anisotropic (orientation dependent) magnetic interactions. Solid or frozen samples contain 

various tensor orientations which each yield a different frequency in a spectrum. Therefore 

rather than one sharp peak for each tensor orientation, the peaks appear as one broad band, 

referred to as a powder pattern. On the other hand, fast motions of the tensors, such as rapid 

molecular tumbling seen in solution state samples at higher temperatures, average out the 

anisotropic magnetic interactions, yielding a narrow linewidth. The i-Iamiltonian can now be 

adjusted to tape anisotropy into account. 

~_ ~eBo'g1S1~ `~ ~eBOg2s2z - ~n(Iiz + I2z) + I1zAlslz + I2zA2s2z + S1zDS2z + JS1zs2z 

I~ is the dipolar coupling tensor, J is the scalar exhange interaction, ~~ is the Larmor 

frequency of the nitrogen nucleus of the nitroxide spin label, and die is the Bohr magneton. 

The A-tensor represents the interaction between the electron spin and the spin of the nucleus, 

IZ. The g-tensor represents the interaction between the electron and the DC magnetic field, 

Bo (Hustedt ~ Beth, 1999). The magnetic field has no effect on the A anisotropy tensor; 

therefore this tensor has little effect on line broadening. The magnetic field strength directly 

affects the g anisotropy tensor and so it is this tensor that has the greatest impact on 

inhomogeneous broadening. 

With the Fourier deconvolution method, spectra of samples are typically taken at 

-130°C to alleviate any incomplete time averaging of 8. At this low temperature molecular 

motions are slow and the tumbling rate is practically zero. Under these conditions, an 

anisotropic term would contribute greatly to the double spin labeled Hamiltonian energy 

operator. Below 7 Angstroms, J coupling is the dominant interaction. However, dipolar 

coupling dominates the spin label Hamiltonian between 7 and 25 Angstroms. Anisotropy 
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tensors may be cancelled out by reference to a singly labeled spectrum and the Fourier 

deconvolution method is a valid distance measurement technique. However, larger spin-spin 

interaction distances decrease the contribution of the dipolar coupling term to the energy of 

the system, enabling g-anisotropy to play a larger role for line broadening (Hustedt &Beth, 

1999}. This inhibits the ability of distances larger than 25 Angstroms to be measured 

accurately using the Fourier deconvolution method. 

The protein and spin label are motional frozen and have very Tittle flexibility at 

-130°C (143K). In theory, if the distance measurement was taken at -40°C, the protein 

would still have limited motion. Therefore incomplete time average of 8 should not be a 

concern. However, the spin label would be more flexible. Increasing the mobility of the spin 

label would decrease the g-tensor anisotropy. This scenario may decrease the 

inhomogeneous broadening enough to determine the broadening due to dipolar coupling. 

To test this theory, a double cysteine mutant was made on the neuronal v-SNARE, 

soluble SNAP-25 [C] at positions M 146C & M 167C (Figure 2.5). T`he residues were 21 

amino acids apart from one another (i + 21 }. Formation of the SNARE complex induces an 

alpha helical structure. Based on calculations of 3.6 residues per turn, 5.4 Angstroms per 

pitch, and 21 residues apart, the spin Labels, in theory, would be separated by 32.4 Angstroms 

(Figure 2.6). 

Methods 

DNA Mutagenesis. Plasmid far Synta~cin, SNAP-25[C] & [N], and VAMP was attained 

from colleagues and transformed with DHSa subcloning efficiency cells. Mutant primers 

encoding sequences of SNAP-25 [C] M 146C & M 167C were ia~serted separately in 
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Esche~ichia coli as N-terminal glutathione S-transferaee (GST} fusion protein templates from 

the pGEX vectors and generated by polymerase chain reaction (PCR) based mutagenesis. 

There were no naturally occurring cysteine residues that needed to be zr~utated in SNAP-

25 [C]. A Quickchange site-directed mutagenesis kit (Stratagene) was used to generate the 

mutants. To create the doubly mutated DNA, the first amplif ed and verified mutant primer 

was used a.s the "template" and added to the second primer for PCR amplification. The 

double mutants were also verified by the DNA sequencing facility at Iowa State University. 

wildt~ype and mutated DNA piasmid sequence alignment was done using the DNA sequence 

aliment query available at the Institut de Genetique Humaine website (Pearson et al., 

1997). 

Purification of GST-fusion Proteins. The cDNA of soluble wildtype Syntaxin la 

(residues 191-266), VAMP-2 (residues 1-94), and SNAP-25 [C] (residues 125-206), with 

cysteine mutations at positions 1VI 146 & lUi 167, was transformed with BL21 CodonPlus 

competent RIL cells, purchased from Stratagene (La Jolla, CA) and plated on luria broth agar 

plates containing of 0.1 %ampicillin. A colony from this plate was inoculated into l OmL 

luria broth (LB) containing 10µL of 100 mg/mL ampicillin and 10µL of 3 0 mglmL 

chloroamphenicol. The preculture was incubated for 16 hrs overnight at 37°C at 220 rpm. 

The cells were transferred to 600 mL of LB cont<~.ining 3mL of 40% glucose. when the cells 

had an optical density (OD) of 0.6-0.8 the proteins within were overexpressed with 600uL 

1 M isopropyl-~3-D-thigalactopyranonside (IPTG}. The cells were incubated at 16°C for 

Syntaxin &VAMP-2, 20°C for SNAP-25 [C]), 120 rprn for 4-6 hrs. The cells were 
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centrifuged at 6K rpm for 10 minutes. The supernatant was disposed of and the pellet was 

frozen at -80°C. 

The, frozen pellet was later defrosted at -4°C. l OmL of phosphate buffered saline 

(PBS) buffer pI-17.4, 40µL SOOmM ethylenediaminetriacetic acid (EDTA), 100 µL of 200µM 

4-(2-aminoethyl)benzenesulfonyl (AEBSF), 40µL of 0.4% Triton, and O.SmL of 10% n- 

lauryl sarcosine were added and the solution was vortexed and sonicated to break the cell 

membrane. The broken cells were mixed for 30 minutes at 4°C and centrifuged at 1 SK for 

20 minutes. The supernatant was added to a flash column conti~ining 2.5-3 mL of nickel 

agarose beads and allowed to nutate at 4°C for at least 2 hrs. The beads were washed with a 

PBS buffer at least 3 times and thrombin cleavage buffer (TCB) pH 8 at least twice. 

Far cysteine mutated proteins, 50µL of 1 M dithiothreitol (DTT) was added before 

sonicating, 40µL of 1 M DTT was added to the supernatant before adding broken cell solution 

to the flash column, and 5µL of 1 M DTT was added for every 1 mL total solution in the flash 

column. The solution was allowed to nutate at least one hour. The column was washed with 

PBS pl-I 7.4 buffer 6 times. 80µL of SOrr~-1VI methanethiosulfonate spin label (1ViTSL) was 

added to approximately 5 mL of total buffer and beads solution. Column nutated at room 

temp for 3--4 hrs. 80µL snore of SOrnM MTSL was added to column and allowed to nutate 

overnight at 4°C. Column was washed 3 times with PBS buffer and 2 times with TCB pH 8 

buffer. 

Approximately 4 mL of TCB was added to the column with 30µL of bovine thrombin 

and allowed to nutate at room temperature for approximately 40-40 minutes. The elution 

was mixed with a f~na.l concentration of 10% glycerol and stored at -80°C. 
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Purification of His6-tagged Proteins. The cDNA of soluble ~vildtype SNAP-25 [N] 

(residues 1-82) was transformed with BL21 CodonPlus efficiency cells and plated on luria 

broth agar plates containing 0.1 % kanamycin. A colony from this plate ,was inoculated into 

1 OmL luria broth containing kanamycin and chloroampherucol. The preculture was 

incubated for 16 hrs overnight at 37°C at 220 rpm. 600 mL LB containing 0.1 % kanamycin 

and 3 mL 40% glucose was then inoculated with the overnight culture and incubated at 37°C 

and 175 rpm. when the cells had an OD of 0.6-~0.8 the proteins were then overexpressed 

with 600µL of 1 M IPTG. The glucose is a source of food for the cells to grow. Lactose is 

naturally produced by the cells. However, this lactose is needed for overexpression of the 

protein. Therefore, glucose is added to preserve the lactose for the overexpression step of the 

purif cation. IPTG is a derivative of lactose and is added for the cell to overexpress the 

protein of interest. The cells were incubated at 1 b°C and 120 rpm. for 4-6 hrs. The cells were 

then centrifuged at 6K rpm for 10 minutes. The supernatant was disposed of and the pellet 

was frozen at -80°C. 

The frozen pellet was later defrosted at -4°C. l OmL of lysis buffer (1 OmIVI 

imidizole), 100µL of 100rriM 4-(2-Aminoethyl)-benzenesulfonyl fluoride, hydrocholoric acid 

(AEBSP), and 500 µL of 10% (w~v) n-lauryl sarcosine were added. AEBSF is a prote~.se 

inhibitor that prevents protease enzymes from cleaving peptide bonds. ~ lauryl sarcosine 

helps to break apart the cell membrane. The solution was vortexed and sonicated to break the 

cell membrane. The broken cells were mixed for 30 minutes at 4°C and centrifuged at 13.SK 

for 20 minutes. The supernatant was added to a flash column containing 2.5-3 mL of Ni 

agarose beads and allowed to notate at 4°C for at least 2 hrs. The beads were washed with a 
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wash buffer (20rr~Ni imidizole) at least 3 times. One small amount of SNAP-25 [N] was 

eluted with eluent (250mM imidizole) for concentration and SDS-PAGE assays. The 

remainder was stored -80°C with the SNAP-25 [N] still on the Ni agarose beads so that the 

SNARE complex may be formed when Syntaxin, SNAP-25 [C] and VAMP-2 were added to 

the Ni column with SNAP-25 [N] already bound. 

The purity of all protein eluents were verified using a sodium dodecyl sulfate 

polyacridamide gel electrophoresis (SDS-PAGE) assay. The concentrations were checked 

using a BioRad protein assay kit using bovine serum albumin (BSA) as a standard. Spin 

labeling efficiency of SNAP-25 [C] double and single mutants were calculated based on the 

relative concentration of a free radical standard, 4-hydroxy TEMPO. Glutathione agarose, 

bovine thrombin, n-lauroyl sarcosine, Triton X-100, dithiothrietol, ampicillin sodium salt, 

chloroamphenicol, kanamycin, and the low molecular weight size marker for SDS-PAGE 

were all purchased from Sigma. 

EPR Spectrometer Parameters. A Broker 300 continuous wave ESR spectrometer 

(Broker, Germany) equipped with a low noise microwave amplifier (Miteq, Hauppauge, NY) 

and aloop-gap resonator (Medical Advances, Milwaukee, w~I) was used. The modulation 

amplitude was set at 2 Gauss and an X-band (9.2 GHz) microwave frequency was used. 

Spectra were taken with 4 scans each of spin labeled SNAP-25 [C] M 146C/M 1670 alone and 

reconstituted into a soluble SN.A~RE complex cont<~ining wildt;YPe SNAP-25 [N], vAMP-2, 

and Syntaxin. The sample cavity temperature was decreased with liquid nitrogen to -130°C 

(143 K), -60°C, and -40°C for binary complex samples. The distance measurements were 

performed with the spectra of ternary SNARE complexes taken at -40°C. 
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Results and Discussion 

The spectra of the binary SNARE complex at -130°C, -60°C, and -4o°C demonstrates 

the concept of inhomogeneous broadening (Figure 2.7). As the temperature decreases, 

inhomogeneous broadening increases due to the restricted motion of the g-tensor. Therefore 

g-tensor anisotropy is the major contributor to inhomogeneous broadening. 

At room temperature, the leis side of the spectra (MI = 1) for the binary complex 

shows two pews. The broad left peak represents the population of complexed SNARE and 

the narrow right peak the population for the non-complexed SNAP-25 [C] protein. In Figure 

2.8b it can be seen that the population of non-complexed spin labeled protein (arrow) is 

greater than the population of complexed protein. Binary SNARE complex is fairly unstable 

and can dissociate easily. The ternary SNARE complex replaces one of the syntaxin proteins 

with VAMP-2, a vesicle associate protein (v-SNARE). This complex is very stable and does 

not dissociate easily. Therefore, in order to increase the amount of complexed protein and 

decrease the amount ofnon-complexed protein, samples used for distance measurement 

contained soluble VAMP-2 rather than twice the amount of syntaxin. The result of this 

change can be seen in Figure 2.8c. The ratio of complexed to non-complexed spin labeled 

SNAP-25 [C] has increased. This can be seen from the change in peak heights on the left side 

of the spectra (MI = 1) at room temperature. Figure 2.8a is the spectrum of SNAP-25 [C] 

before it was placed in the SNARE complex. 

while the overlay of the spectra for interacting and non-interacting spin labeled 

SNAP-25 [C] appear to be different, there are other pieces of evidence that suggest the 32 

Angstrom distance could not be measured by continuous wave EPR. First, when the distance 
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between the two spins can be measured, the data is fit to a Gaussian curve, as shown in the 

first two examples of Figure 2.9a. However, the data. for 32 Angstroms appears to be a 

straight Line rather than well f t to a Gaussian curve (Figure 2.1 Ob), similar to the third 

example of Figure 2.1 Oa. This suggests the distance betv~een spin labels was not accurately 

measured. Second, the ~ cutoff should not effect the distance measurement. However, it can 

be clearly seen from Figure 2.10 that the noise cutoff value made a signif cant difference in 

the calculated distance. These results indicate a 32 Angstrom distance could not be measured 

using the Fourier-deconvolution method at -40°C. 

In theory, the non-interacting spectrum could be broadened by convoluting it with a 

Gaussian function until it closely resembles the interacting spectrum. This data analysis was 

attempted using the MatLab data program and shown in Figure 2.11. The non-interacting 

spectrum could not be broadened to match the interacting spectrum. Figure 2.12 shows the 

broadened non-interacting spectrum (dark blue) to be fit to the sides of the mI = 1 peak and 

the center mI = 0 peak of the interacting spectra (red). However, the top of the side peaks, mI

= 1 and - l , do not match well. If the difference between the interacting and non-interacting 

spectra were due to the broadening that would result from dipolar interactions or anisotropy 

tensors, the pears would match up when the reference spectrum was broadened by 

convoluting the non-interacting spectrum with a Gaussian function. 

This analysis indicates the difference between the two spectra is not broadening but 

rather a shift in peak positions of the hyperfine lines, which may be the result of different 

sample conditions. The non-interacting sample was the doubly spin labeled soluble SNAP-

25 [C] alone in solution with a random coil conformation. The interacting spin labeled 

sample was the same doubly labeled soluble SNAP-25[C] in complex with soluble Syntaxin 
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1 a and soluble VAMP-2. In the SNARE complex, SNAP-25 [C] is an a-helix. This is a 

different secondary structure than in the reference sample. The spin labels are at the "P' 

position of the coiled coil, therefore the substituted residues should not have tertiary 

interactions as a result of complex formation. These may or not be the cause of the shifted 

peaks seen in Figure 2.11. 

The reference sample should be similar in conditions to the interacting sample to get 

the best distance measurement possible. More than one variable between the reference and 

doubly spin labeled samples may make a difference for measurement of larger distances. 

Conclusions 

our experiment demonstrated that a 32.4 Angstrom distance could not be measured 

by continuous wave EPR spectroscopy at -40°C. The reason for this can only be speculated. 

Perhaps the anisotropy term in the Hamiltonian was not decreased enough for the dipolar 

interaction to be the dominant factor, on the other hand, perhaps having more than one 

variable between the reference and the interacting samples had an effect on the ability of the 

Fourier deconvolution method to accurately measure the distances larger than 25 Angstroms. 

In future experiments the reference sample should be a singly labeled soluble SNAP-25 [C] 

that is in complex with the other SNARE proteins to reduce the number of variables between 

the reference and doubly labeled samples. 
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Figure 2.1. Fourier deconvolution theory subtracts the spectra of the reference from the 

spectra of the double spin labeled protein (Rabenstein &Shin, 1995}. 
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Figure 2.2. Pake Pattern splitting is twice that of the magnetic field and is inversely 

proportional to the distance between the two spin labels (Rabenstein &Shin, 1995). 
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Figure 2.3. dipolar ~PIE~ coupling gneasured using the Fourier deconvoflution method 

(~abe~stein ~ Shin, 1995). 
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Figure 2.4. when one spin is close enough in vicinity to another, the dipolar interaction 

induces a change in spin states. The spin-spin relaxation time is referred to a.s TZ (Knowles et 
~l. , 1976). 
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F'igwre 2.5. (a) '~'~ie heptad repeat pc~sitior~s of amino acids within $&~e binary 51V 

coa~~lex that has a coaled coil co~oamation (adapted froYn Zhang et cal., 2002). (b) 'The 

axn~o acid sequence for soluble wildtype SINAI'-2~[~:, s~ow~ng heptad repeat positions of 

each residue. "' esidues higl~lighte~ red (1V~[146 ~i 1VI167) were mutated to cysteines. 
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Figure 2.7. Demonstration of increasing linewidth as temperature decreases, using soluble 

binary SN~►RE complex. Anisotropic motions are averaged out at higher temperatures when 

the correlation time of the protein is fast. At lower temperatures, the correlation time is much 

slov~er and the anisotropic magnetic interactions cause the broadening of linewidths in the 

spectra. 
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(a) 

(b) 

(c) 

Figure 2.8. EPR spectra of spin-labeled SN~.RE at room temperature. (a) The EPR 

spectrum of double spin labeled SNAP-25[C]. The protein is in a random coil conformation 

and the spin labels are too far apart from one another to interact. The spin label efficiency 

was 100%, based on a relative calculation with a standard, 4-hydroxy 'lIElVIPO. (b} The EPR 

spectrum of double SDSL SNAP-25 [C] in the binary SN.A~RE complex, using two syntaxin 

molecules. (c) The EPR spectrum of double SDSL SNAP-25 [C] in the ternary SNARE, 

using ~IAIVIP-2 instead of a second syntaxin molecule. Complex formation contains the 

soluble regions of wildtype Synt<~xin 1 A., SNAP-25 [N] and v~~P-2. 
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Figure 2.9. (a) Examples of dflstax~ce measurements between spna~ fla~els using tfl~e Fourier 

deconvolution rriethod (adapted frogn ~ttem~.nn et al.,199~). ~~,eft fly) AF~sorbance spectrum 

ofnon-interacting spin labels (red) compared to absorbance spec o~ ~te~~cting spin 

labels (green). ~ ~'' 'ght b) ~'flt daa~ ~o two Gaussian functions. ~e ynte~asity (y-pis) vs. ~.uiits 

of inverse gauss (x- .xis) is linear, medicating it is unabfle to fat ~e cfl~t~, to a Gaussian 

f~c~ion. 'g`he ~alysis was pe~~~ed with MatLab 7.0. 



www.manaraa.com

35 

~~I o~ ~u~i~P Ei'i~ ate ~ n ~ a ~ n~ ~ ~~ ~ e urn m ~ ntn 

,` 

poi ~ ~, ~ ~ ~u ~ 1 ~;~,u~~~ 

--~—Mee~ved alp I 
~~ 1 dl~l 
~~ ~ dl$I 

~ig~e 20 ~1®. The effect ®~ different mdse cutoffs (c~~ ®~ the ove~~.il dista~.ce m.easu~eme~t 

ar~.d for each of ~ e ~aussia~. functions fit to the data. 



www.manaraa.com

~~ 

N 

N 

0 
N 

0 
N 

0 

0 

0 

0 

O 
D 
N 

0 0 a 

0 

~-°~ 
o ,.~ cfl ~ 

0 0 

0 
N 

0 

O 
0 
N 
r 

0 0 

0 0 
00 

0 

0 
0 
~f' 

0 0 
N 

0 

u 

to
 b

ro
ad

en
 th

e 
no

n-
in

te
ra

ct
in

g 
sp

ec
tra

 (o
rig

in
al

 
ou

nt
 o

f b
ro

ad
en

in
g 

an
d 

co
nv

ol
ut

io
n 

ne
ce

ss
 

Fi
gu

re
 2

.1
1.

 d
at

a 
an

al
ys

is
 o

n 
th

e 

w
as

 b
ro

ad
en

ed
 3

 5 
po

in
ts

, 
(b

) 
'T

he
 n

on
-in

te
ra

ct
in

g 
sp

ec
t 

sp
ec

tru
m

 w
as

 b
ro

ad
en

ed
 0

.2
5 

po
in

ts
, w

ith
 a

 0
. ~ 

y~
ax

is 
sc

al
in

g 
fa

ct
or

. 

m
at

te
r o

f b
ro

ad
en

in
g 

du
e t

o 
an

is
ot

ro
py

 fa
ct

or
s, 

bu
t r

at
he

r a
 "S

hi
ft9

9 t
ha

t c
ou

ld
 b

e 
ca

us
ed

 b
y 

se
co

nd
ar

y 
st

ru
ct

ur
e 

di
ff

er
en

ce
s b

et
w

ee
n 

th
e 

tw
o 

sy
st

em
s. 

Th
e 

an
al

ys
is

 w
as

 p
er

fo
rm

ed
 w

ith
 li

~I
atL

ab
 7

.0
. G

ug
l. 



www.manaraa.com

J~ 

CHAPTER 3: DETERMINING PROTEIN CONFOP:~VIATION TJSING 

'THE EPR SPECTR®SCOPIC R~JLER 

Introduction 

Protein conformation often reflects the function of a protein. Common conformations 

found in proteins are a-helices, 31 o-helices, ~3-sheets, and random coils. Particular traits 

characterize these different conformations. For example, an a-helix contains 3.6 residues 

(amino acids) per turn, and each of these turns are approximately ~.4 Angstroms in distance 

(one translation along the helical axis), and the length of an amino acid. Also, every residue 

within an a-helix is approximately 1.5 Angstroms in length (Nelson &Cox, 2000). A 310-

helix is more tightly wound than an a-helix. This helix has 3 residues per turn and contains 

10 atoms in the ring enclosed by the carbonyl-amine hydrogen bond. An a-helix would be 

considered a 3.613-helix (Monaco et al. , 1999). A ~i-sheet that is anti-parallel has a period 

length (2 amino acids) of 7 Angstroms. This is the optimum distance, with no forces pulling 

on the sheet. Therefore the Iength of one amino acid in a ~i-sheet can be approximated to 3.5 

Angstroms. A random coil conformation has no definite structure (Nelson &Cox, 2000). 

with this knowledge, as well as the known number of residues between the spin labels, 

evidence of a local conformation within a protein can be obtained by comparing the 

experimental data with that of calculated distances expected for each possible conformation. 

The yeast SNARE Sso 1 p is a transmembrane protein integrated into the target 

membrane (t-SNARE). The soluble region of this protein is known to conform to an alpha 

helical structure upon complex formation with the t-SNARE Sec9, a protein with a palmitoyl 

vesicle membrane attachment, and the v-SNA.~RE Snc2. The section of Sso 1 p involved in the 
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S1~TARE motif ends at residue 250, and the transmembrane region of the protein begins 

around residue 267. The transmembrane section of Sso 1 p is assumed to be alpha helical, 

according to recent unpublished results by Y. Zhang and Y.-K. Shin. Residue K263 is located 

in the linker region of the protein, outside of the membrane. Residue V270 is located just 

within the transmembrane region. In order to determine the conformation of the region 

linking the soluble section of the protein to the transmembrane domain, a double cysteine 

mutant of full length S so 1 p I~:263 C/V270C is studied. The cysteine mutations are 7 amino 

acids apart. 

If the conformation is helical, there would be 3.6 residues per turn, which means there 

would be 2 complete helical tarns. There is a length of 5.4 Angstroms for a translation along 

the principal axis of one helical turn (I~Telson &Cox, 2000). Therefore a distance 

measurement of ~ 10.8 Angstroms would be expected. The mutations would be at the same 

position of the helix and so the spin label "arm" at each mutated position would be eclipsed 

with the other. Therefore, the length of the "arm" should not affect the distance 

measurement if the conformation of the linker is alpha helical. 

If the conformation is a beta sheet, the distance measurement would be the maximum 

length possible for amino acids 7 residues apart from each other. each residue is 

approximately 3.5 Angstroms in length. Therefore if the conformation of the linker was a 

beta sheet, the distance measured between the spin labels would be approximately 24.5 

Angstroms. If the conformation of the linker domain is a random coil, the distance 

measurement would be somewhat less than 24.5 Angstroms. 
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IVlethods 

I~[is6-tagged Pr®tein Purification. The cDNA of soluble wildt;Ype Sec9 (residues 401-651) 

was transformed with Rosetta pLysS cells and plated on luria broth agar plates containing 

kanamycin. The Sec9 used in this study did not contain the first 400 amino acids of its N-

terminal. However, these residues do not effect SNARE complex formation and so there is 

no concern over their presence. A colony from this plate was inoculated into l OmL luria 

broth containing kanamycin and chloroamphenicol. The preculture was incubated for 16 hrs 

overnight at 37°C at 220 rpm. 600 mL LB conta'uzing 0.1 % kanamycin and 3 mL 40% 

glucose was then inoculated with the overnight culture and incubated at 37°C and 175 rpm. 

When the cells had an optical density (OD) of 0.6-0.8 the proteins were then overexpressed 

with 600µL isopropylthio-~3-D-galactopyranoside (IPTC~). The glucose is a source of food 

for the cells to grow. Lactose is naturally produced by the cells. However, this lactose is 

needed for overexpression of the protein. Therefore, glucose is added to preserve the lactose 

for the overexpression step of the purification. TPTG is a derivative of lactose and is added 

for the cell to overexpress the protein of interest. The cells were incubated at 22°C and 120 

rpm for 4-6 hrs. The cells were then centrifuged at 6K rpm for 10 minutes. The supernatant 

was disposed of and the pellet was frozen at -80°C. 

The frozen pellet was later defrosted at -4°C. 1 OmL of lysis buffer (1 OmM 

imidizole), 100µL of 100mM 4-(2-Aminoethyl}-benzenesulfonyl fluoride, hydrocholoric acid 

(AEBSF), and 500 µL of 10% (w/v) n-lauryl sarcosine were added. AEBSF is a protease 

inhibitor that prevents protease enzymes from cleaving peptide bonds. N-lauryl sarcosine 

helps to break apart the cell membrane. The solution was vortexed and sonicated to break the 

cell membrane. The broken cells were mixed for 3 0 minutes at 4°C and centrifuged at 13 . ~ K 
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for 20 minutes. The supernatant vas added to a hash column containing 2.5-3 mL of Ni 

agarose beads and allowed to notate at 4°C for at least 2 hrs. The beads were washed with a 

wash buffer (20rr~M imidizole) at least 3 times. Approximately 4 mL of elution buffer 

(250nr~.IVI ilnidizole) was added to the column and allowed to notate at 4°C for approximately 

1 hr. 25 µL of AEBSF was added to stop the reaction with thrombin. Besides acting as a 

protease inhibitor, AEBSF also acts as an inhibitor to thrombin. The elution was mixed with 

a final concentration of 10% glycerol and stored at -80°C. Glycerol is a commonly used 

cryoprotectant for proteins. 

GST-fusion Protein Purification. The cDNA of soluble wildtype Snc2 (residues 1-115) 

was transformed with Rosetta pLysS cells and plated on luria broth agar plates cont<~.ining 

amplclllln. A colony from this plate was inoculated into l OmL luria broth containing 

arnpicillin and chloroamphenicol. The preculture was incubated for 16 hrs overnight at 37°C 

at 220 rpm. When the cells had an OD 0.6-0.8 the proteins within were overexpressed with 

600uL IPTG. The cells were incubated at 22°C and 120 rpm for 4-6 hrs. The cells were 

centrifuged at 6K rpm for 10 minutes. The supernatant was disposed of and the pellet was 

frozen at -80°C. 

The frozen pellet was later defrosted at -4°C. I OmL of PBS buffer, EDTA, AEBSF, 

and n-lauryl sarcosine (same molar amounts as Chapter 2 experiments) were added and the 

solution was vortexed and sonicated to break the cell membrane. The broken cells were 

mixed for 30 minutes at 4°C and centrifuged at 15K for 20 minutes. The supernatant was 

added to a flash column containing 2.5-3 mL of nickel agarose beads and allowed to notate at 

4°C for at least 2 hrs. The beads were washed with a PBS buffer at least 3 tunes and 
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thrombin cleavage buffer (TCB) at least twice. Approximately 4 mL of TCB was added to 

the column with 30µL of bovine thrombin and allowed to notate at room temperature for 

approximately 40-60 minutes. The elution was mixed with a final concentration of 10% 

glycerol and stored at -80°C. 

Purification of Spin-Labeled Ssolp 1Vlutants. Mutants were made by laboratory colleague 

Yong Chen. Mutation primers were ordered from Qiagen. The mutations were made via 

polymerase chain reaction (PCR) with Sso 1 p plasmid and pGEX vector and verified by the 

Iowa State University DNA sequencing facility. The cDNA of full length Sso 1 p (residues 1-

290) was copied with DHSa sublconing effeciency cells and transformed with Rosetta pLysS 

cells and plated on luria broth agar (LBA) cont<~.ining ampicillin. 

10 mL of autoclaved luria broth containing 0.1 %ampicillin and 0.1 

chloroampherucol was inocul~.ted with a colony from the Rosetta cell LBA plate. The 

preculture was incubated overnight for 16 hrs at 37°C at 220 rpm. The preculture was 

pipetted into 600 mL autoclaved LB containing 0.1 %ampicillin, 0.1 % chloroamphenicol, 

and 3 mL 40% glucose. The E. col i cells were harvested until they achieved an OD of 0.6-

0.8. The proteins were overexpressed by the addition of 600µL 1 M IPTG and incubated at 

18° and 120 rpm for 4--6 hrs. The cells were centrifuged at 6K rpm for 10 minutes. The 

supernatant was disposed of and the pellet was frozen at -80°C. 

The frozen pellet was later defrosted at 4°C. l OmL of PBS (phosphate buffered 

saline) buffer with 0.1 %Triton-X at pH 7.4, and the molar amounts of AEBSF, lauryl 

sarcosine, EDTA, and DTT were added as in the experiments performed in Chapter 2. The 

solution was vortexed and then sonicated to break the cell membrane. The broken cells were 
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mixed for 30 minutes at 4°C and then centrifuged at 13.SK for 20 minutes. The supernatant 

was then added to a flash column containing 2.5--3 mL of glutathione-S-transferase (GST} 

beads and dithiothreitol (DTT). The protein solution notated on the beads for at least 2 hrs 

and then was drained. The beads were then washed with the PCB S buffer at least 5-~7 times. 

In order to ensure that the cysteine residues remain reduced, DTT was added again, notated 

at least 1 hr, and then washed with PBS buffer at least 6 times. washing the beads to remove 

excess DTT is important because DTT would react with the nitroxide spin label, resulting in 

low spin labeling efficiency. 

80µL of SOrr~M 1-Oxy1-2,2,S,5-tetramethyl-~3-pyrroline-3-methyl) 

methanethiosulfonate (NYSE), purchased from Toronto Research Chemicals (North York, 

Canada), was added to the column and allowed to notate at room temperature for 4 hrs and 

then at 4°C overnight after 80µL more SOin.M MTSL was added. The column was washed 

3-4 times with PBS buffer and 3 times with thrombin cleavage buffer (TCB) containing 

0.2% TritonX-100. With approximately 4 mL of buffer on the column, 3 0µL bovine 

thrombin was then added to the column and allowed to notate at room temperature for 40-b0 

minutes. The protein was then eluted off the column and 25µL of 100rx~Ni AEBSF was 

added to the final yield. 80uL more of SOmN MTSL was added with urea (final 

concentration less than 1 M} and notated at room temperature for 3 hrs. An additional aliquot 

of MTSL was added and the solution was notated overnight at 4°C. To remove the excess 

spin Label and urea, the solution was dialyzed in TCB buffer using 3KDa dialyzing tubing. 

The dialyzing buffer was changed every 3-4 hrs and this was done at least 4 times. The 

elution was stored at -80°C with a final glycerol concentration of 10%. Sso 1 p 

K:263 C/V270C had a spin label efficiency of 76%. 
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The purity of all protein eluents were verified using a sodium dodecyl sulfate 

polyacridamide gel electrophoresis (SDS-PAGE) assay. The concentrations were checked 

using BioRad protein assay kit using bovine serum albumin (BSA) as a standard. Spin 

labeling efficiency of Ssolp double and single mutants were calculated based on the relative 

concentration of a free radical standard, 4-hydroxy TEMPO. 

Preparation of Vesicles. The vesicles were composed of 1-palmitoyl-2-oleoyl 

phosphatidylcholine (POPC} with 15 mol % 1,2-dioleoyl phophatidylserine (OOPS), which 

were purchased from Avanti Polar Lipids (Bv:~rningharn, AL). The lipids in powder form 

were dissolved in chloroform in a disposable glass test tube. The chloroform was evaporated 

off with air under a hood, leaving the lipids adhered to the glass. The test tube was placed in 

a dessicator overnight. The lipids were dissolved in 1 mL of 25mM 1-IEPES 100mM KCl pH 

7.5 buffer and pushed through an extruder. The vesicles were stored at 4°C for a few days. 

Reconstitution of Ssolp into Vesicle I1~Ielnbrane. Vesicles and spin-labeled Ssolp protein 

were mixed together and nutated at room temperature for approximately 15 minutes. Bio-

Beads SM-2 adsorbent beads, purchased from Bio-Rad (Hercules, CA) were added to the 

solution for the purpose of adsorbing the Triton 100-X detergent in the solution. The bio-

beads nutated at 4°C for 30 minutes, were centrifuged down and the solution was pipetted off 

into fresh beads. This was repeated three times. 

SNARE Complex Formtation. The S so 1 p protein already reconstituted in vesicles was 

mixed with two times as much soluble Sec9 (wt, a.:mino acids 401-651) and allowed to mix 
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for at least 5 minutes to form binary SNARE complexes. After spectra were taken, four 

times the amount of Snc2p (wt, amino acids 1-115) was added and mixed for at least 5 

minutes for ternary SNARE complex formation to occur. 

EPJE~ Spectrometer Parameters. A Broker 300 continuous wave ESR spectrometer 

(Broker, Germany), equipped with a low noise microwave amplifier (Miteq, Hauppauge, 

NYC and aloop-gap resonator (Medical Advances, Milwaukee, wI) was used. The 

modulation amplitude was set at 2 G; the modulation frequency at 100 kHz. X-band (9.2 

GHz) microwave frequency was used. The sample cavity temperature was decreased with 

liquid nitrogen to a temperature of -13 0°C (143 K). Spectra of Sso 1 p K:263 C reconstituted 

into vesicles and in the SNAR E complex, as well as Sso 1 p ~~263 CIV270C reconsttuted and 

in complex, were taken with 4 scans at room temperature and 143 K (-40°C}. 

Results and Discussion 

The Fourier convolution-deconvolution method yielded a distance measurement of 

12-14 Angstroms between residues 263 and 270 of Sso 1 p. while 10.8 Angstroms would be 

the expected distance for a perfect a-helix, with spin labels at residues i and i + 7, should the 

conformation be "perfect" to be labeled an a-helix`? Using a TOAC spin label, Monaco and 

colleagues (1999) determined a distance of 12.04 Angstroms for an a-helix with spin labels 

separated by 7 residues. They also determined the same amino acid separation would have a 

distance of 13.98 Angstroms in a 310-helix. 

Hanson et cal. (1996) argue that a 31 o-helix is a thermodynamic folding intermediate 

between a random coil and an a-helix. However, the 31 o/a-helix threshold are peptides of 
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approximately 8 residues. In addition, according to Zhang & Hermans (1994) and Tirado-

Rives et al. (1993), a polyalanine a-helix was found to be lower in free energy by 10-16 

kcal/mol than a polyalanine 31 o-helix. Therefore, it is improbable a 31 ~-helix would exist in 

the linker region of a SN~►RE protein. 

Current research is being done by Yinghui Zhang of the Shin laboratory at Iowa State 

University on the tl-ansmembrane domain of Sso 1 p. His findings estimate that the linker and 

transmembrane domains are helical in structure. More specifically his research suggests that 

the transmembrane domain is a-helical and the region from 263 to 265 of the linker region is 

unstructured (unpublished work). 

Conclusions 

The distance measurement yielded a length of 12--14 Angstroms. Based on 

comparing the results yielded, by the Fourier deconvolution method with Fourier 

deconvolution distance measurements performed in the past, and the recent EPR collisional 

method experiments performed by the Shin laboratory, the linker region conformation is 

most likely an a-helix that is slightly unstructured between residues 263 -265. 
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Figure 3.3. Left: the delta function from the y-axis offset in M*(c~). Right: the dipolar 

function (M(B)) after subtracting the reference spectra. 
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CI-IAPTEI~ 4: GENERAL CONCLTJSIONS 

Conclusions 

EPR spectroscopy is a useful tool for determining the structures and mechanisms of 

biochemical phenomena. Direct distance measurement between spin labeled sites is a useful 

method of determining the secondary and tertiary structure of proteins and nucleic acids 

(Hustedt &Beth, 1999; Biswas et al. , 2001). The two different types of EPR are a 

continuous wave or pulses of microwave energy used to excite the spin states of the unpaired 

electrons of a sample. Both types of EPR have their disadvantages. Continuous wave EPR is 

useful for measuring small distances (<25 Angstroms) between two spin Labeled sites, 

whereas pulse EPR methods are useful for measuring larger distances beyond 50 Angstroms 

(Persson et al. , 2001) 

The Fourier deconvolution method was unable to measure a 32 Angstrom distance at 

-40°C. However, data analysis suggests the inability to measure the long distance may be a 

result of different secondary structures of the spin labeled proteins in the reference and 

interacting spectrums. Presently, the Fourier deconvolution method is capable of measuring 

up to 25 Angstroms and is the only cwEPR method capable of measuring such a large 

distance (Rabenstein &Shin, 1995). 

SN1~►RE proteins bridge the vesicle membrane with the plasma membrane, and their 

complex formation is a necessary step for membrane fusion. The fusion of two opposing 

membranes requires a large amount of energy. It has been suggested the coupling of the core 

SNARE complex to the membrane harnesses the energy necessary for fusion of the synaptic 

vesicle with the plasma membrane of a neuron (~ et al. , 2002; RvtiTeon et al. , 2002; I~weon 
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et al. , 2003 ). an the other hand, when the Snc2 post-golgi body v-SNARE forms the core 

complex, it inserts a helical linker region into the membrane to play more of a set-up role 

rather than an energetic role for membrane fusion (Chen et al. , 2004; Zhang et al. , 2005 ). 

Knowledge of the linker region between the SNARE complex and the membrane 

provides greater insight about the mechanisms necessary for membrane fusion. The linker 

conformation of the post-golgi body t-SNARE Sso 1 p was determined based on the distance 

between residues 263 and 270. When the Sso 1 p protein is reconstituted into the membrane, 

the linker region is most likely helical in structure based upon the measured distance of 12--

14 Angstroms between residues K263 and V270. This distance measurement supports the 

immersion depth data from EPR collisional method experiments performed by Yinghui 

Zhang, a colleague in the Shin laboratory (unpublished data). Zhang's collisional method 

experiments also suggest that residues 263-265 may be unstructured. 

Sso 1 p is the transmembrane t-SNARE in post-golgi both membrane fusion. . Its 

analog neuronal t-SNARE, Syntaxin 1 a, also showed an unstructured linker area of 

approximately 3 residues (Kim et al. , 2002; Kweon et al., 2002). This unstructured area may 

be conserved among transmembrane t-SN~►.REs. However, fiarther knowledge of other t- 

SNAREs would be necessary before any general conclusions could be made. 
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